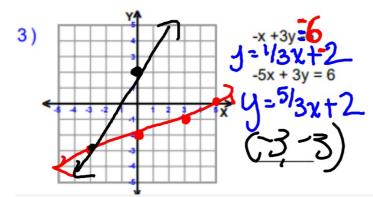
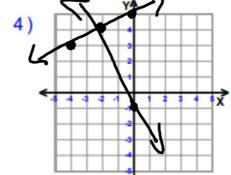
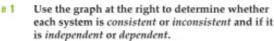

## Solve each system by graphing.





$$y = -2x + 2$$
  
 $y = -2x + 2$   
 $-x + y = -4$   
 $y = -4$ 












$$y = \frac{1}{2}x + 5$$
$$y = -\frac{5}{2}x - 1$$

١



1. 
$$y = -3x + 1$$
  
 $y = 3x + 1$  Consistent and independent

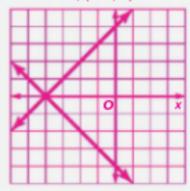
$$y = -3x + 1$$
 consistent and  $y = 3x + 1$  consistent and independent  $y = x - 3$  independent

$$y = 3x + 1$$
 independent  
3.  $y = x - 3$   
 $y = x + 3$  inconsistent

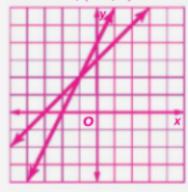
4. 
$$y = x + 3$$
 consistent and  $x - y = -3$  dependent

5. 
$$x-y=-3$$
 consistent  $y=-3x+1$  and independen

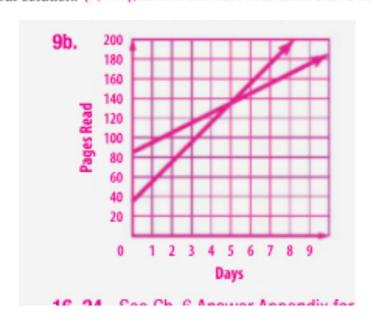
5. 
$$x-y=-3$$
 consistent 6.  $y=-3x+1$  consistent and  $y=-3x+1$  and  $y=x-3$  independent




7. 
$$y = x + 4$$
  
 $y = -x - 4$ 


8. 
$$y = x + 3$$
  
 $y = 2x + 4$ 

## Additional Answers





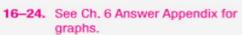

8. 1 solution, (-1, 2)



- 9. MODELING Alberto and Ashanti are reading a graphic novel.
   9a. Alberto: y = 20x + 35;
   Ashanti y = 10x + 85
  - Ashanti: y = 10x + 85
     Write an equation to represent the pages each boy has read.
  - Graph each equation. See margin.
  - c. How long will it be before Alberto has read more pages than Ashanti? Check and interpret your solution. (5, 135); Alberto will have read more after 5 days.






er of solutions that it has. rgin.

18. 
$$y = x - 6$$
  
 $y = x + 2$ 

**21.** 
$$x + 2y = 3$$
  $x = 5$ 

**24.** 
$$2x + 2y = 6$$
  
 $5y + 5x = 15$ 

- 10. consistent and independent
- 11. consistent and independent
- 12. inconsistent
- 13. consistent and independent
- 14. consistent and dependent
- consistent and independent

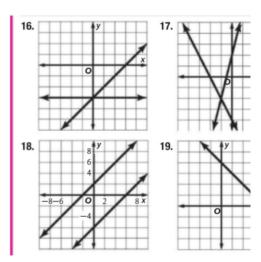


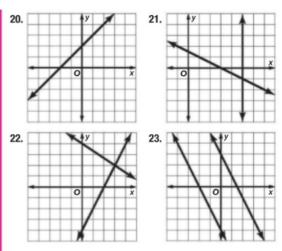
**16.** 1 solution, (0, −3)

17. 1 solution; (-1, -2)

18. no solution

19. infinitely many


20. infinitely many


21. 1 solution; (5, -1)

22. 1 solution; (3, 2)

23. no solution

24. infinitely many





## Linear Systems: SUBSTITUTION METHOD Guided Notes

- s for solving systems using SUBSTITUTION:
- Step 1: Isolate one of the variables.
- Step 2: Substitute the expression from Step 1 into the OTHER equation.
  - The resulting equation should have only one variable, not both x and y.
- Step 3: Solve the new equation.
  - · This will give you one of the coordinates.
- **9** Step 4: Substitute the result from Step 3 into either of the original equations.
- Step 5: Solve for the other coordinate.
- **9** Step 6: Write the solution as an ordered pair. (x, y)

a) 
$$y = 2x - 1$$

Example: b) 3x + 2y = 26

- <u>Step 1</u>: Isolate one of the variables.
- 9 <u>Step 2</u>: Substitute the expression from Step 1 into the OTHER equation.
  - The resulting equation should have only one variable, not both x and y.
- 9 Step 3: Solve the new equation.
  - This will give you one of the coordinates.
- 9 <u>Step 4</u>: Substitute the result from Step 3 into either of the original equations.
- 9 <u>Step 5</u>: Solve for the other coordinate.
- Delta Step 6: Write the solution as an ordered pair. (x, y)

Step 1: equation a diready has y isolated

• Step 2: 3x+2(2x-1)=26

© Step 3: 3x+4x-2=26

$$\chi = 4$$
  $\frac{7x-2}{12} = \frac{20}{12}$ 

- © Step 4: y = 2(4) 7
- $0 \frac{\text{Step 5}}{\text{Step 6}} = 7$ 
  - (4,7)

xample:

- a) -4x + y = 6
- b) -5x y = 21

Step 1: Isolate one of the variables.

Step 2: Substitute the expression from Step 1 into the OTHER equation.

 The resulting equation should have only one variable, not both x and y.

Step 3: Solve the new equation.

 This will give you one of the coordinates.

Step 4: Substitute the result from Step 3 into either of the original equations.

Step 5: Solve for the other coordinate.

Step 6: Write the solution as an ordered pair. (x, y)

Step 1: Isolate Equation a because y has a coefficient of positive 1.

$$-4x + y = 6$$
  
+4x +4x  
 $y = 4x + 6$ 

 $\odot$  Step 2: -5x - (4x+6) = 21

 $\odot$  Step 3: -5x-4x+-6=21

 $\odot$  Step 4: y=4(-3)+6

 $\frac{\text{Step. 6:}}{\left(-3,-6\right)}$ 

y = 2x y = 3x + 7

2x=3x+7