
Exponental functions

Growth

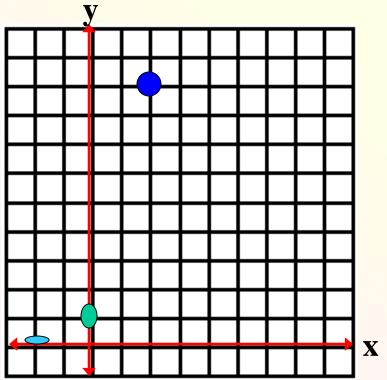
Decay

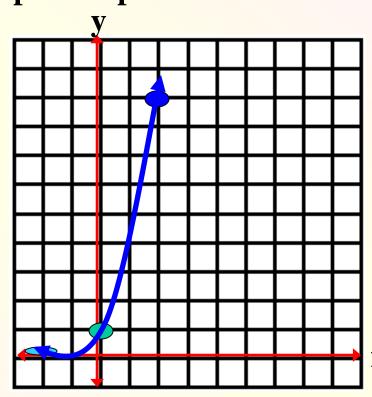
Graphs of Exponential Functions

Exponential function – A function of the form $y=ab^x$, where b>0 and b \neq 1.

Step 1 – Make a table of values for the function.

$$y=3^x$$


X	$y=3^x$	y
-2	$3^{-2} = \frac{1}{3^2}$	1 9
0	30	1
2	3 ²	9
3	3 ³	27


Make the Graph

Now that you have a data table of ordered pairs for the function, you can plot the points on a graph.

(-2, 1/9) (0,1) (2,9)

Draw in the curve that fits the plotted points.

Domain and Range

Domain – The collection of all input values of a function. These are usually the "x" values.

Range – The collection of all output values of a function. These are usually the "y" values.

Describe the domain and range of the function $y = -5^x$.

<u>Domain</u> – The domain of the function is all real numbers since the function is defined for all x-values.

Range – The range of the function is all negative real numbers.

Exponential Growth Functions

If a quantity increases by the same proportion r in each unit of time, then the quantity displays exponential growth and can be modeled by the <u>equation</u>

$$y = C(1+r)^t$$

Where

C = initial amount

r = growth rate (percent written as a decimal)

t = time

(1+r) = growth factor where 1+r>1

Example: Compound Interest

You deposit \$1500 in an account that pays 2.3% interest compounded yearly,

- 1) What was the initial principal (**P**) invested?
- 2) What is the growth rate (\mathbf{r}) ? The growth factor?
- 3) Using the equation $\mathbf{A} = \mathbf{P}(\mathbf{1}+\mathbf{r})^{t}$, how much money would you have after 2 years if you didn't deposit any more money?
- 1) The initial principal (P) is \$1500.
- 2) The growth rate (r) is 0.023. The growth factor is 1.023.

3)
$$A = P(1+r)^{t}$$

 $A = 1500(1+0.023)^{2}$
 $A = 1569.79

Exponential Decay Functions

If a quantity decreases by the same proportion r in each unit of time, then the quantity displays exponential decay and can be modeled by the <u>equation</u>

$$y = C(1-r)^t$$

Where

C = initial amount

r = growth rate (percent written as a decimal)

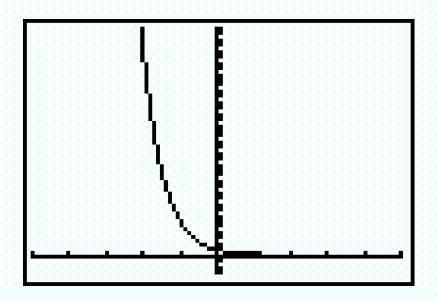
t = time

(1 - r) = decay factor where <math>1 - r < 1

Example: Exponential Decay

You buy a new car for \$22,500. The car depreciates at the rate of 7% per year,

- 1) What was the initial amount invested?
- 2) What is the decay rate? The decay factor?
- 3) What will the car be worth after the first year? The second year?
- 1) The initial investment was \$22,500.
- 2) The decay rate is 0.07. The decay factor is 0.93.


3)
$$y = C(1-r)^t$$
 $y = C(1-r)^t$
 $y = 22,500(1-0.07)^1$ $y = 22,500(1-0.07)^2$
 $y = $20,925$ $y = 19460.25

You Try It

- 1) Make a table of values for the function $y = \left(\frac{1}{6}\right)^x$ using x-values of -2, -1, 0, 1, and 2. Graph the function. Identify the domain and range of the function. Does this function represent exponential growth or exponential decay?
- 2) Your business had a profit of \$25,000 in 1998. If the profit increased by 12% each year, what would your expected profit be in the year 2010? <u>Identify</u> *C*, *t*, *r*, and *the growth factor*. Write down the equation you would use and solve.
- 3) Iodine-131 is a radioactive isotope used in medicine. Its half-life or decay rate of 50% is 8 days. If a patient is given 25mg of iodine-131, how much would be left after 32 days or 4 half-lives. <u>Identify</u> *C*, *t*, *r*, and the *decay factor*. Write down the equation you would use and solve.

Problem 1

x	$y = \left(\frac{1}{6}\right)^x$	y
-2	$\left(\frac{1}{6}\right)^{-2}=6^2$	36
-1	$\left(\frac{1}{6}\right)^{-1} = 6^1$	6
0	$\left(\frac{1}{6}\right)^0$	1
1	$\left(\frac{1}{2}\right)^1$	$\frac{1}{6}$
2	$\left(\frac{1}{6}\right)^2$	1 36

The **domain** of this function is the set of all real numbers.

The <u>range</u> of this function is the set of all positive real numbers.

This function represents exponential decay.

Problem 2

$$C = $25,000$$

$$T = 12$$

$$R = 0.12$$


 $Growth\ factor = 1.12$

$$y = C(1+r)^t$$

$$y = $25,000(1+0.12)^{12}$$

$$y = $25,000(1.12)^{12}$$

$$y = $97,399.40$$

Problem 3

$$C = 25 \text{ mg}$$

$$T = 4$$

$$R = 0.5$$

$$Decay factor = 0.5$$

$$y = C(1-r)^{t}$$

$$y = 25mg(1-0.5)^{4}$$

$$y = 25mg(0.5)^{4}$$

$$y = 1.56mg$$