Lesson-by-Lesson Review

Multiplication Properties of Exponents

Simplify each expression.

11.
$$x \cdot x^3 \cdot x^5$$

12.
$$(2xy)(-3x^2y^5)$$

13.
$$(-4ab^4)(-5a^5b^2)$$
 14. $(6x^3y^2)^2$

14.
$$(6x^3y^2)^2$$

15.
$$[(2r^3t)^3]^2$$
 16. $(-2u^3)(5u)$

16.
$$(-2u^3)(5u)$$

17.
$$(2x^2)^3(x^3)^3$$
 18. $\frac{1}{2}(2x^3)^3$

18.
$$\frac{1}{2}(2x^3)^3$$

19. GEOMETRY Use the formula $V=\pi r^2 h$ to find the volume of the cylinder.

Example 1

Simplify $(5x^2y^3)(2x^4y)$.

$$(5x^2y^3)(2x^4y)$$

$$= (5 \cdot 2)(x^2 \cdot x^4)(y^3 \cdot y)$$

Commutative Property

$$=10x^6y^4$$

Product of Powers

Example 2

Simplify $(3a^2b^4)^3$.

$$(3a^2b^4)^3 = 3^3(a^2)^3(b^4)^3$$
$$= 27a^6b^{12}$$

Power of a Product

Division Properties of Exponents

Simplify each expression. Assume that no denominator equals zero.

20.
$$\frac{(3x)^0}{2a}$$

21.
$$\left(\frac{3xy^3}{2z}\right)^3$$

22.
$$\frac{12y^{-4}}{3y^{-5}}$$

23.
$$a^{-3}b^0c^6$$

24.
$$\frac{-15x^7y^8z^4}{-45x^3y^5z^3}$$

25.
$$\frac{(3x^{-1})^{-2}}{(3x^2)^{-2}}$$

26.
$$\left(\frac{6xy^{11}z^9}{48x^6yz^{-7}}\right)^0$$

$$27. \left(\frac{12}{2}\right) \left(\frac{x}{y^5}\right) \left(\frac{y^4}{x^4}\right)$$

28. **GEOMETRY** The area of a rectangle is $25x^2y^4$ square feet. The width of the rectangle is 5xy feet. What is the length of the rectangle?

Example 3

Simplify $\frac{2k^4m^3}{4k^2m}$. Assume that no denominator equals zero

$$\frac{2k^4m^3}{4k^2m} = \left(\frac{2}{4}\right)\left(\frac{k^4}{k^2}\right)\left(\frac{m^3}{m}\right)$$

Group powers with the same base

$$=\left(\frac{1}{2}\right)k^{4-2}m^{3-1}$$

Quotient of Powers

$$=\frac{k^2m^2}{2}$$

Simplify.

Example 4

Simplify $\frac{t^4uv^{-2}}{t^{-3}u^7}$. Assume that no denominator equals ze

$$\frac{t^4 u v^{-2}}{t^{-3} u^7} = \left(\frac{t^4}{t^{-3}}\right) \left(\frac{u}{u^7}\right) (v^{-2})$$

Group the powers with the same base.

$$=(t^{4+3})(u^{1-7})(v^{-2})$$

Quotient of Powers

$$= t^7 u^{-6} v^{-2}$$

Simplify.

$$=\frac{t^7}{u^6v^2}$$

Simplify.

Rational Exponents

simplify.

29.
$$\sqrt[3]{343}$$

32.
$$\left(\frac{8}{27}\right)^{\frac{1}{3}}$$

33.
$$256^{\frac{3}{4}}$$

34.
$$32^{\frac{2}{5}}$$

35.
$$343^{\frac{4}{3}}$$

36.
$$\left(\frac{4}{49}\right)^{\frac{3}{2}}$$

Solve each equation.

37.
$$6^x = 7776$$

38.
$$4^{4x-1} = 32$$

Example 5

Simplify $125^{\frac{2}{3}}$.

$$125^{\frac{2}{3}} = (\sqrt[3]{125})^{2}$$
$$= (\sqrt[3]{5 \cdot 5 \cdot 5})^{2}$$

$$b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^m$$

$$= (V5 \cdot 5 \cdot 5)$$

= 5^2 or 25

 $64 = 4^3$ Simplify.

Example 6

Solve
$$9^{x-1} = 729$$
.

$$9^{x-1} = 729$$

Original equation

$$9^{x-1} = 9^3$$

Rewrite 729 as 93.

$$X - 1 = 3$$

Power Property of Equality

$$X = 4$$

Add 1 to each side.

Scientific Notation

Express each number in scientific notation.

39, 2,300,000

40. 0.0000543

41. ASTRONOMY Earth has a diameter of about 8000 miles. Jupiter has a diameter of about 88,000 miles. Write in scientific notation the ratio of Earth's diameter to Jupiter's diameter.

Example 7

Express 300,000,000 in scientific notation.

Step 1 300,000,000 -> 3.00000000

Step 2 The decimal point moved 8 places to the left, so n = 8.

Step 3 $300,000,000 = 3 \times 10^8$

Exponential Functions

Graph each function. Find the y-intercept, and state the domain and range.

42.
$$y = 2^x$$

43.
$$y = 3^x + 1$$

44.
$$y = 4^x + 2$$

45.
$$y = 2^x - 3$$

46. BIOLOGY The population of bacteria in a petri dish increases according to the model $p = 550(2.7)^{0.008t}$, where t is the number of hours and t = 0 corresponds to 1:00 P.M. Use this model to estimate the number of bacteria in the dish at 5:00 P.M.

Example 8

Graph $y = 3^{x} + 6$. Find the y-intercept, and state the domain and range.

X	3* + 6	y
-3	$3^{-3} + 6$	6.04
-2	$3^{-2} + 6$	6.11
-1	$3^{-1} + 6$	6.33
0	$3^0 + 6$	7
1	$3^1 + 6$	9

The y-intercept is (0, 7). The domain is all real numbers. and the range is all real numbers greater than 6.

Growth and Decay

- 47. Find the final value of \$2500 invested at an interest rate of 2% compounded monthly for 10 years.
- 48. COMPUTERS Zita's computer is depreciating at a rate of 3% per year. She bought the computer for \$1200.
 - Write an equation to represent this situation.
 - b. What will the computer's value be after 5 years?

Example 9

Find the final value of \$2000 invested at an interest n of 3% compounded quarterly for 8 years.

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
$$= 2000\left(1 + \frac{0.03}{4}\right)^{4(8)}$$

Compound interest equali

$$P = 2000, r = 0.03,$$

 $n = 4, \text{ and } t = 8$

Geometric Sequences as Exponential Functions

Find the next three terms in each geometric sequence.

Write the equation for the nth term of each geometric sequence.

55. SPORTS A basketball is dropped from a height of 20 feet. It bounces to $\frac{1}{2}$ its height after each bounce. Draw a graph to represent the situation.

Example 10

≈ \$2540.22

Find the next three terms in the geometric sequence 2, 6, 18,

Step 1 Find the common ratio. Each number is 3 times the previous number, so r = 3.

Step 2 Multiply each term by the common ratio to find the next three terms.

$$18 \times 3 = 54, 54 \times 3 = 162, 162 \times 3 = 486$$

The next three terms are 54, 162, and 486.

Example 11

Write the equation for the nth term of the geometric sequence -3, 12, -48,

The common ratio is -4. So r = -4.

$$a_n = a_1 r^{n-1}$$
 Formula for the *n*th term $a_n = -3(-4)^{n-1}$ $a_1 = -3$ and $r = -4$

7_9 Recursive Formulas

Find the first five terms of each sequence.

56.
$$a_1 = 11, a_n = a_{n-1} - 4, n \ge 2$$

57.
$$a_1 = 3$$
, $a_n = 2a_{n-1} + 6$, $n \ge 2$

Write a recursive formula for each sequence.

Example 12

Write a recursive formula for 3, 1, -1, -3,

Step 1 First subtract each term from the term that follows it. 1-3=-2, -1-1=-2, -3-(-1)=-2There is a common difference of -2. The sequence is arithmetic.

Step 2 Use the formula for an arithmetic sequence.

$$a_n = a_{n-1} + d$$
 Recursive formula $a_n = a_{n-1} + (-2)$ $d = -2$

Step 3 The first term a_1 is 3, and $n \ge 2$.

A recursive formula is $a_1 = 3$, $a_n = a_{n-1} - 2$, $n \ge 2$.