Adding and Subtracting Polynomials

Write each polynomial in standard form.

11.
$$x + 2 + 3x^2$$

12.
$$1 - x^4$$

13.
$$2 + 3x + x^2$$

14.
$$3x^5 - 2 + 6x - 2x^2 + x^3$$

Find each sum or difference.

15.
$$(x^3+2)+(-3x^3-5)$$

16.
$$a^2 + 5a - 3 - (2a^2 - 4a + 3)$$

17.
$$(4x-3x^2+5)+(2x^2-5x+1)$$

18. PICTURE FRAMES Jean is framing a painting that is a rectangle. What is the perimeter of the frame?

$$2x^2 - 3x + 1$$

Example 1

Write $3 - x^2 + 4x$ in standard form.

Step 1 Find the degree of each term.

degree 0

degree 2 $-x^{2}$:

degree 1 4x.

Step 2 Write the terms in descending order of degree.

$$3 - x^2 + 4x = -x^2 + 4x + 3$$

Example 2

Find
$$(8r^2 + 3r) - (10r^2 - 5)$$
.

$$(8r^2 + 3r) - (10r^2 - 5)$$

$$8r^2 + 3r$$
) - (10 $r^2 + 5$) Use the additive inverse.

$$=(8r^2-10r^2)+3r+5$$

Group like terms.

$$=-2r^2+3r+5$$

Add like terms.

Multiplying a Polynomial by a Monomial

Solve each equation.

19.
$$x^2(x+2) = x(x^2+2x+1)$$

20.
$$2x(x+3) = 2(x^2+3)$$

21.
$$2(4w + w^2) - 6 = 2w(w - 4) + 10$$

3x

$$x^2 + x - 7$$

Example 3

Solve
$$m(2m-5) + m = 2m(m-6) + 16$$
.

$$m(2m-5) + m = 2m(m-6) + 16$$

$$2m^2 - 5m + m = 2m^2 - 12m + 16$$

$$2m^2 - 4m = 2m^2 - 12m + 16$$

$$-4m = -12m + 16$$

$$8m = 16$$

$$m=2$$

Multiplying Polynomials

Find each product.

23.
$$(x-3)(x+7)$$

25.
$$(3r - 7t)(2r + 5t)$$

26.
$$(2x + 5)(5x + 2)$$

27. PARKING LOT

The parking lot shown is to be payed. What is the area to be paved?

Example 4

Find
$$(6x - 5)(x + 4)$$
.

$$(6x - 5)(x + 4)$$

F 0

$$= (6x)(x) + (6x)(4) + (-5)(x) + (-5)(4)$$

$$=6x^2 + 24x - 5x - 20$$
 Multiply.

$$=6x^2+19x-20$$
 Combine like terms.

Study Guide and The

R_A Special Products

Find each product.

28.
$$(x + 5)(x - 5)$$

29.
$$(3x-2)^2$$

30.
$$(5x + 4)^2$$

31.
$$(2x-3)(2x+3)$$

32.
$$(2r + 5t)^2$$

33.
$$(3m-2)(3m+2)$$

GEOMETRY Write an expression to represent the area
of the shaded region.

$$\begin{array}{c|c}
2x + 5 \\
\hline
x + 2 \\
\hline
x - 2
\end{array}$$

Example 5

Find
$$(x - 7)^2$$
.

Find
$$(x-7)^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$
 $(x-7)^2 = x^2 - 2(x)(7) + (-7)^2$
 $= x^2 - 14x + 49$

Square of a Difference a = x and b = 7

Simplify.

Example 6

Find
$$(5a - 4)(5a + 4)$$
.

$$(a + b)(a - b) = a^2 - b^2$$

Product of a Sum and Difference

$$(5a-4)(5a+4) = (5a)^2 - (4)^2$$

= $25a^2 - 16$

a = 5a and b = 4Simplify.

8-5 Using the Distributive Property

Use the Distributive Property to factor each polynomial.

35.
$$12x + 24y$$

36.
$$14x^2y - 21xy + 35xy^2$$

37.
$$8xy - 16x^3y + 10y$$

38.
$$a^2 - 4ac + ab - 4bc$$

39.
$$2x^2 - 3xz - 2xy + 3yz$$

Solve each equation. Check your solutions.

41.
$$x(3x-6)=0$$

42.
$$6x^2 = 12x$$

43.
$$x^2 = 3x$$

44.
$$3x^2 = 5x$$

45. GEOMETRY The area of the rectangle shown is
$$x^3 - 2x^2 + 5x$$
 square units. What is the length?

Example 7

Factor
$$12y^2 + 9y + 8y + 6$$
.

$$12y^2 + 9y + 8y + 6$$

$$= (12y^2 + 9y) + (8y + 6)$$

Group terms with common factors.

$$= 3y(4y+3) + 2(4y+3)$$

Factor the GCF from each group.

$$=(4y+3)(3y+2)$$

Distributive Property

Example 8

Solve $x^2 - 6x = 0$. Check your solutions.

Write the equation so that it is of the form ab = 0.

$$x^2 - 6x = 0$$

Original equation

$$x(x-6)=0$$

Factor by using the GCF.

$$x = 0$$
 or $x - 6 = 0$

Zero Product Property

$$x = 6$$

Solve.

The roots are 0 and 6. Check by substituting 0 and 6 for x^{in} the original equation.

Solving $x^2 + bx + c = 0$

Factor each trinomial. Confirm your answers using a graphing calculator.

46.
$$x^2 - 8x + 15$$

47.
$$x^2 + 9x + 20$$

48.
$$x^2 - 5x - 6$$

49.
$$x^2 + 3x - 18$$

Solve each equation. Check your solutions.

50.
$$x^2 + 5x - 50 = 0$$

51.
$$x^2 - 6x + 8 = 0$$

52.
$$x^2 + 12x + 32 = 0$$

53.
$$x^2 - 2x - 48 = 0$$

54.
$$x^2 + 11x + 10 = 0$$

55. ART An artist is working on a painting that is 3 inches longer than it is wide. The area of the painting is 154 square inches. What is the length of the painting?

Example 9

Factor $x^2 + 10x + 21$

b=10 and c=21, so m+p is positive and mp is positive. Therefore, m and p must both be positive. List the positive factors of 21, and look for the pair of factors with a sum

Factors of 21	Sum of 10
1, 21	22
3,7	10

The correct factors are 3 and 7.

$$x^2 + 10x + 21 = (x + m)(x + p)$$
 Write the pattern.
= $(x + 3)(x + 7)$ $m = 3$ and $p = 7$

8.7 Solving $ax^2 + bx + c = 0$

Factor each trinomial, if possible. If the trinomial cannot be factored, write prime.

56.
$$12x^2 + 22x - 14$$

57.
$$2y^2 - 9y + 3$$

58.
$$3x^2 - 6x - 45$$

59.
$$2a^2 + 13a - 24$$

Solve each equation. Confirm your answers using a graphing calculator.

60.
$$40x^2 + 2x = 24$$

61.
$$2x^2 - 3x - 20 = 0$$

62.
$$-16t^2 + 36t - 8 = 0$$

63.
$$6x^2 - 7x - 5 = 0$$

64. GEOMETRY The area of the rectangle shown is $6x^2 + 11x - 7$ square units. What is the width of the rectangle?

2x - 1

Example 10

Factor $12a^2 + 17a + 6$

a=12, b=17, and c=6. Since b is positive, m+p is positive. Since c is positive, mp is positive. So, m and p are both positive. List the factors of 12(6) or 72, where both factors are positive.

Factors of 72	Sum of 17
1,72	73
2, 36	38
3, 24	27
4, 18	22
6, 12	18
8,9	17

The correct factors are 8 and 9.

$$12a^{2} + 17a + 6 = 12a^{2} + ma + pa + 6$$

$$= 12a^{2} + 8a + 9a + 6$$

$$= (12a^{2} + 8a) + (9a + 6)$$

$$= 4a(3a + 2) + 3(3a + 2)$$

$$= (3a + 2)(4a + 3)$$

So,
$$12a^2 + 17a + 6 = (3a + 2)(4a + 3)$$
.

R _ P Differences of Squares

Factor each polynomial.

65.
$$y^2 - 81$$

66.
$$64 - 25x^2$$

67.
$$16a^2 - 21b^2$$

68.
$$3x^2 - 3$$

Solve each equation by factoring. Confirm your answers using a graphing calculator.

69.
$$a^2 - 25 = 0$$

69.
$$a^2 - 25 = 0$$
 70. $9x^2 - 25 = 0$

71.
$$81 - y^2 = 0$$

72.
$$x^2 - 5 = 20$$

Example 11

Solve $x^2 - 4 = 12$ by factoring.

$$x^2 - 4 = 12$$

Original equation

$$x^2 - 16 = 0$$

Subtract 12 from each side

$$x^2 - (4)^2 = 0$$

$$16 = 4^2$$

$$(x + 4)(x - 4) = 0$$

Factor the difference of squares.

$$x + 4 = 0$$
 or $x - 4 = 0$ Zero Product Property

$$x = -4$$

$$x = 4$$

$$x = 4$$
 Solve each equation

The solutions are -4 and 4.

Perfect Squares

Factor each polynomial, if possible. If the polynomial cannot be factored write prime.

74.
$$x^2 + 12x + 36$$

75.
$$x^2 + 5x + 25$$

76.
$$9y^2 - 12y + 4$$

77.
$$4 - 28a + 49a^2$$

78.
$$x^4 - 1$$

79.
$$x^4 - 16x^2$$

Solve each equation. Confirm your answers using a graphing calculator.

80.
$$(x-5)^2=121$$

81.
$$4c^2 + 4c + 1 = 9$$

82.
$$4y^2 = 64$$

83.
$$16d^2 + 40d + 25 = 9$$

84. LANDSCAPING A sidewalk of equal width is being built around a square yard. What is the width of the sidewalk?

Example 12

Solve
$$(x-9)^2 = 144$$
.

$$(x-9)^2 = 144$$

$$x - 9 = \pm \sqrt{144}$$

$$x - 9 = \pm 12$$

$$144 = 12 \cdot 12$$

$$x = 9 \pm 12$$

$$x = 9 + 12$$
 or $x = 9 - 12$ Zero Product Property

$$x = 2^{-1}$$

$$x = 21$$
 $x = -3$

CHECK

$$(x-9)^2=144$$

$$(x - 9)^2 = 144$$

$$(21-9)^2 \stackrel{?}{=} 144$$

$$(-3-9)^2 \stackrel{?}{=} 144$$

$$(12)^2 \stackrel{?}{=} 144$$

$$(-12)^2 \stackrel{?}{=} 144$$