- -Get in groups of 3
- -Answer the six questions using the notes on a piece of notebook paper (everyone needs their own copy)

20 minutes to complete

**Characteristics of Quadratic Functions** Quadratic functions are nonlinear and can be written in the form  $f(x) = ax^2 + bx + c$ , where  $a \ne 0$ . This form is called the **standard form** of a quadratic function.

The shape of the graph of a quadratic function is called a **parabola**. Parabolas are symmetric about a central line called the **axis of symmetry**. The axis of symmetry intersects a parabola at only one point, called the **vertex**.



When a > 0, the graph of  $y = ax^2 + bx + c$  opens upward. The lowest point on the graph is the **minimum**. When a < 0, the graph opens downward. The highest point is the **maximum**. The maximum or minimum is the vertex.



## mple 1 Graph a Parabola



a table of values to graph  $y = 3x^2 + 6x - 4$ . State the domain and range.

|   | у  |
|---|----|
|   | 5  |
|   | -4 |
|   | -7 |
| 1 | -4 |
| П | 5  |



Graph the ordered pairs, and connect them to create a smooth curve. The parabola extends to infinity. The domain is all real numbers. The range is  $\{y \mid y \ge -7\}$ , because -7 is the minimum.

## **ded**Practice

Jse a table of values to graph  $y = x^2 + 3$ . State the domain and range. **See margin.** 



43



Recall that figures with symmetry are those in which each half of the figure matches exactly.

A parabola is symmetric about the axis of symmetry. Every point on the parabola to the left of the axis of symmetry has a corresponding point on the other half. The function is increasing on one side of the axis of symmetry and decreasing on the other side.



When identifying characteristics from a graph, it is often easiest to locate the vertex first. It is either the maximum or minimum point of the graph.



## **Example 2** Identify Characteristics from Graphs



Find the vertex, the equation of the axis of symmetry, and the y-intercept of each graph.

\_



Step 1 Find the vertex.

Because the parabola opens upward, the vertex is located at the minimum point of the parabola. It is located at (-1, 0).

Step 2 Find the axis of symmetry.

The axis of symmetry is the line that goes through the vertex and divides the parabola into congruent halves. It is located at x = -1.

Step 3 Find the y-intercept.

The *y*-intercept is the point where the graph intersects the *y*-axis. It is located at (0, 1), so the *y*-intercept is 1.

b.



Step 1 Find the vertex.

The parabola opens downward, so the vertex is located at its maximum point, (2, 3).

Step 2 Find the axis of symmetry.

The axis of symmetry is located at x = 2.

Step 3 Find the *y*-intercept.

The *y*-intercept is where the parabola crosses the *y*-axis. It is located at (0, -1), so the *y*-intercept is -1.

## GuidedPractice

2A.



2B.





| -3 | -2 | -1 | 0  | 1 | 2  |
|----|----|----|----|---|----|
| 0  | -6 | -8 | -6 | 0 | 10 |



| D = | = {all | real | numbers | ,} |
|-----|--------|------|---------|----|
| D . | C I    |      | 0.3     |    |

$$R = \{y \mid y \ge -8\}$$

| -2 | -1 | 0  | 1  | 2  | 3 |
|----|----|----|----|----|---|
| 19 | 4  | -5 | -8 | -5 | 4 |



$$D = \{all \ real \ numbers\};$$

$$R = \{y \mid y \ge -8\}$$

| _  |   |    |    |    |    |   |   |
|----|---|----|----|----|----|---|---|
| 2. | х | -3 | -2 | -1 | 0  | 1 | 2 |
|    | v | 2  | -1 | -2 | -1 | 2 | 7 |



D = {all real numbers};  
B = {
$$v \mid v > -2$$
}

$$R = \{y \mid y \ge -2\}$$

| х  | y   | 4 9     |
|----|-----|---------|
| -1 | 4   |         |
| 0  | -3  | 0 2 4 6 |
| 1  | -8  | -4      |
| 2  | -11 | -8      |
| 3  | -12 |         |
| 4  | -11 | -12     |
| 5  | -8  |         |
|    |     |         |

$$R = \{y \mid y \ge -12\}$$

- 5. vertex (-1, 5), axis of symmetry x = -1y-intercept 3
  - 6. vertex (-2, -3), ax of symmetry x = -2y-intercept 1
  - 7. vertex (-2, -12), axis of symmetry x = -2, y-intercept -4
  - 8. vertex (0, 5), axis of symmetry x = 0, y-intercept 5