Location, Location, Location!
 Line Relationships

Vocabulary

Write the term or terms from the box that best complete each statement.

intersecting lines	perpendicular lines	parallel lines
coplanar lines	skew lines	coincidental lines

1. \qquad are lines that lie in the same plane and do not intersect.
2. \qquad are lines in a plane that cross or intersect each other.
3. Coincidental lines are lines that have equivalent linear equations and overlap at every point when they are graphed.
4. \qquad are lines that intersect at a right angle.
5. \qquad are lines that do not lie in the same plane.
6. \qquad are lines that lie in the same plane.

Problem Set

Describe each sketch using the terms intersecting lines, perpendicular lines, parallel lines, coplanar lines, skew lines, and coincidental lines. More than one term may apply.
perpendicular lines, intersecting lines,
1.
 coplanar lines
2.

parallel lines, coplanar lines

Parallel ines

4.

coincidental lines, coplanar lines
coplanar lines, intersecting lines
5.

intersecting lines, coplanar lines
6. \uparrow
skew lines

Sketch an example of each relationship.
Answers will vary.
7. parallel lines

8. coplanar lines

name DATE
9. intersecting lines

10. perpendicular lines

12. skew lines

Choose the description from the box that best describes each sketch.

Case 1: Two or more coplanar lines intersect at a single point.
Case 2: Two or more coplanar lines intersect at an infinite number of points.
Case 3: Two or more coplanar lines do not intersect.
Case 4: Two or more are not coplanar.
13. \qquad

Case 2
14.

Case 1
15.

Case 3
17.

18.

Case 3

Case 4

NAME

 DATEUse the map to give an example of each relationship.

19. intersecting lines

Answers will vary.

Ivy Lane and Plum Street
21. parallel lines

Answers will vary.

Cherry Street and Chestnut Street
23. coincidental lines

North Daisy Lane and South Daisy Lane
20. perpendicular lines

Answers will vary.

Magnolia Drive and Cherry Street
22. skew lines

None. All streets are in the same plane.
24. coplanar lines

Answers will vary.

All streets are in the same plane.

When Lines Come Together
 Angle Relationships Formed by Two Intersecting Lines

Vocabulary

Match each definition to its corresponding term.

1. Two adjacent angles that form a straight line
b. linear pair of angles
2. Two angles whose sum is 180 degrees
a. supplementary angles

Problem Set

Sketch an example of each relationship.
Answers will vary.

1. congruent figures

2. congruent angles

b. linear pair of angles
a. supplementary angles

Lesson 10.2 Skills Practice

5. linear pair

6. supplementary angles

Use the map to give an example of each relationship.
Answers will vary.

7. congruent angles
$\angle 3$ and $\angle 4$
9. supplementary angles
$\angle 9$ and $\angle 10$
11. adjacent angles
$\angle 17$ and $\angle 18$
8. vertical angles
$\angle 2$ and $\angle 5$
10. linear pair
$\angle 11$ and $\angle 12$
12. vertical angles
$\angle 12$ and $\angle 17$

Lesson 10.2 Skills Practice

name
DATE

Complete each sketch.
Answers may vary.
13. Draw $\angle 2$ adjacent to $\angle 1$.

14. Draw $\angle 2$ such that it forms a vertical angle with $\angle 1$.

15. Draw $\angle 2$ such that it supplements $\angle 1$ and does not share a common side.

16. Draw $\angle 2$ adjacent to $\angle 1$.
17. Draw $\angle 1$ such that it forms a vertical angle with $\angle 2$.

18. Draw $\angle 2$ such that it forms a linear pair with $\angle 1$.

Determine each unknown angle measure.
19. If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 1=42^{\circ}$, what is $m \angle 2$?
$m \angle 1+m \angle 2=180$

$$
\begin{array}{r}
42+x=180 \\
x=138 \\
m \angle 2=138^{\circ}
\end{array}
$$

NAME DATE
20. If $\angle 1$ and $\angle 2$ are supplementary angles and $m \angle 1=101^{\circ}$, what is $m \angle 2$?

$$
\begin{array}{r}
m \angle 1+m \angle 2=180 \\
101+x=180 \\
x=79 \\
m \angle 2=79^{\circ}
\end{array}
$$

21. If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 1$ is one-fifth $m \angle 2$, what is the measure of each angle?
$m \angle 1+m \angle 2=180$

$$
\begin{aligned}
0.2 x+x & =180 \\
1.2 x & =180 \\
x & =150 \quad \text { and } \quad 0.2 x=0.2(150)=30 \\
m \angle 2 & =150^{\circ} \text { and } m \angle 1=30^{\circ}
\end{aligned}
$$

22. If $\angle 1$ and $\angle 2$ are supplementary angles and $m \angle 1$ is 60° less than $m \angle 2$, what is the measure of each angle?

$$
\begin{aligned}
m \angle 1+m \angle 2 & =180 \\
(x-60)+x & =180 \\
2 x & =240 \\
x & =120 \text { and } x-60=120-60=60 \\
m \angle 2 & =120^{\circ} \text { and } m \angle 1=60^{\circ}
\end{aligned}
$$

23. If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 1$ is three times $m \angle 2$, what is the measure of each angle?

$$
\begin{aligned}
m \angle 1+m \angle 2 & =180 \\
3 x+x & =180 \\
4 x & =180 \\
x & =45 \quad \text { and } \quad 3 x=3(45)=135 \\
m \angle 2 & =45^{\circ} \text { and } m \angle 1=135^{\circ}
\end{aligned}
$$

24. If $\angle 1$ and $\angle 2$ are supplementary angles and $m \angle 1$ is 12° more than $m \angle 2$, what is the measure of each angle?
$m \angle 1+m \angle 2=180$

$$
(x+12)+x=180
$$

$$
2 x=168
$$

$$
x=84 \quad \text { and } \quad x+12=84+12=96
$$

$$
m \angle 2=84^{\circ} \text { and } m \angle 1=96^{\circ}
$$

