Name: _____

Some quadratic equations in the form of $ax^2 + bx + c = 0$ can be solved easily by factoring. For example, the equation $x^2 + 6x - 16 = 0$ can be factored easily to (x+8)(x-2) = 0 to give solutions of x = -8 and x = 2

When a quadratic equation cannot be factored using integers, you have two options. You can use the quadratic formula of you can use a method called **completing the square**. When a = 1, completing the square is the way to go (when a > 1, use the quadratic formula).

Example 1: Solve $x^2 + 8x - 10 = 0$ by completing the square.

Since it cannot be factored using integers, Write the equation in the form	$x^2 + 8x - 10 = 0$
$ax^2 + bx = -c$	$x^2 + 8x = 10$
Find $\frac{1}{2}$ of b and add the square of that number $(\frac{b}{2})^2$ to both sides of the equation	Think $b = 8$ $\frac{1}{2}b = 4 \text{ and } 4^2 = 16$ $x^2 + 8x = 10$ $x^2 + 8x + 16 = 10 + 16$
The left side is now a perfect square trinomial (PST), so factor it.	(x+4)(x+4) = 26
	$(x+4)^2=26$
Find the square root of each side.	$(x+4)^2=26$
	$x+4=\pm\sqrt{26}$
Solve for x	$x = -4 \pm \sqrt{26}$

ve each quadratic by completing the square.

$$\int a^2 + 2a - 3 = 0$$

$$(q+1)^2 = 4$$

2)
$$a^2 - 2a - 8 = 0$$
 $q = \frac{1 - 3}{a^2 - 2a = 8}$

$$(q-1)^2 = 9$$

3)
$$p^2 + 16p - 22 = 0$$
 $p^2 + 10p = 22$

$$(p+8)^2 = 80$$

4)
$$k^2 + 8k + 12 = 0$$
 $K^2 + 9K = -12$

5)
$$r^2 + 2r - 33 = 0$$
 $r^2 + 2r = 33$

$$(r+1)^2 = 3+$$

6)
$$a^2 - 2a - 48 = 0$$
 $\gamma = -1 \pm \sqrt{3} + \sqrt{3}$

$$(a-1)^2 = 49$$

7)
$$m^2 - 12m + 26 = 0$$

7)
$$m^2 - 12m + 26 = 0$$

7)
$$m^2 - 12m + 26 = 0$$

$$m^2 - 12m + 26 = 0$$

8)
$$x^2 + 12x + 20 = 0$$

9)
$$k^2 - 8k - 48 = 0$$

10)
$$p^2 + 2p - 63 = 0$$

11)
$$m^2 + 2m - 48 = -6$$

12)
$$p^2 - 8p + 21 = 6$$

$$m^2 - 12m + 30 = 34$$

 $(m^2 - 10)^2 = 10^{10}$

$$\chi^2 + 12\chi = -20$$

$$\chi^2 + 12x + 36 = 10$$

$$(x+6)^2 = -10$$

$$m^2 + 2m = 42$$

 $(m^2 + 2m + 1 = 43)$

$$(mt1)^2 = 43$$

 $mt1 = \sqrt{43}$

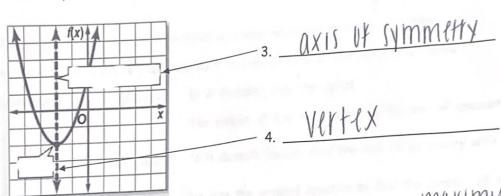
Graphing Quadratics Review Worksheet

Name

Fill in each blank using the word bank.

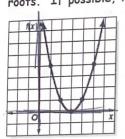
ill in each blank	k using the word bo	INK.	x-intercepts
vertex	minimum	axis of symmetry	
parabola	maximum	zeros/roots	$-ax^2 + bx + c$

- 1. Standard form of a quadratic function is $y = \frac{Q\chi^2 + b\chi + C}{2}$
- 2. The shape of a quadratic equation is called a $\frac{parahlla}{}$



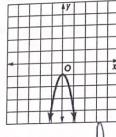
- 6. When the vertex is the lowest point on the graph, we call that a $\underline{\text{MINIMM}}$
- 7. Our solutions are the X-Intl/(1)t
- 8. Solutions to quadratic equations are called _

Determine whether the quadratic functions have two real roots, one real root, or no real roots. If possible, list the zeros of the function.



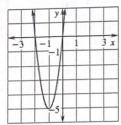
9. Number of roots:

Zero(s): __



10. Number of roots:

Zero(s): NIN6



11. Number of roots: Z

Zero(s): 0, -2

12. Given the graph, identify the following.

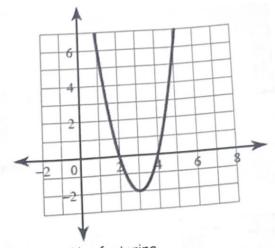
Axis of symmetry: X= 3

Vertex: (3,-2)

How many zeros: 2 which are: 2,4

Domain: all VIA #5

Range: $\sqrt{Z-2}$



Graph the following quadratic functions by using critical values and/or factoring.

You need three points to graph and don't necessarily need all the information listed.

Remember:

Option 1:

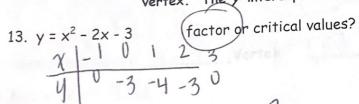
If it factors, find the zeros.

The middle of the two factors is the axis of symmetry.

If it doesn't factor, find the axis of symmetry with $x = \frac{-b}{2a}$ Option 2:

Plug the x-value into the original equation to find the y-value of the

vertex. The y-intercept is at (0, c)

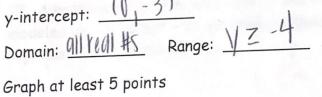


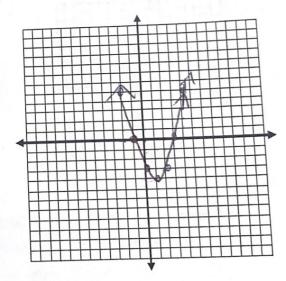
Identify the zeros/roots: ___ and ____

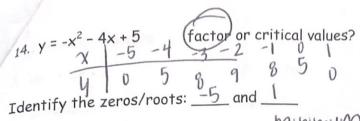
Does it have a minimum or maximum? MINIMUM

Axis of symmetry: $\chi = 1$ Vertex: (1-4) y-intercept: (1-3)

Domain: all real 书 Range: 12-4





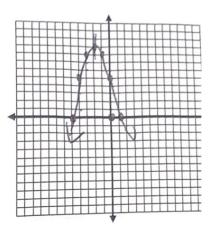


Does it have a minimum or maximum? MINIMUM Y=9

Axis of symmetry: $\chi = -2$ Vertex: (-2, 9)

y-intercept: (0,5) Graph at least 5 points

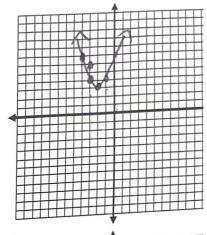
Domain: All Yealth's Range: Y = 9

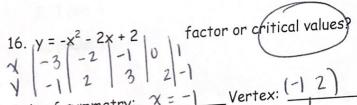


15.
$$y = x^2 + 4x + 7$$
 factor or critical values?
 $\frac{\chi}{|-4|} - \frac{3}{3} - \frac{2}{|-4|} + \frac{3}{3} + \frac{1}{4}$
Axis of symmetry: $\frac{\chi}{|-2|} = \frac{2}{|-2|}$ Vertex: $\frac{(-2, 3)}{|-3|}$

Max or Min? MIN

y-intercept: (0,7) Graph at least 3 points

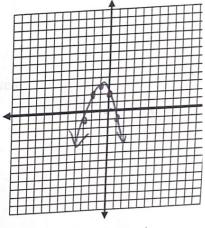




 $\sqrt{|-||2|3|2|-1}$ Axis of symmetry: $\chi = -1$ Vertex: (-|2)

Max or Min? Max

Graph at least 5 points y-intercept: [1,2]



17. A bottlenose dolphin jumps out of the water. The path the dolphin travels can be modeled by $h = -0.2d^2 + 2d$, where h represents the height of the dolphin and d $\frac{-b}{2a}$ $\frac{-2}{2(-2)} = 5$ represents horizontal distance.

a. What is the maximum height the dolphin reaches? y = 5 GF+

b. How far did the dolphin jump? WHT (ZEM UF THE FUN HTU)